Real-time prediction of formation pressure gradient while drilling

Author:

Abdelaal Ahmed,Elkatatny Salaheldin,Abdulraheem Abdulazeez

Abstract

AbstractAccurate real-time pore pressure prediction is crucial especially in drilling operations technically and economically. Its prediction will save costs, time and even the right decisions can be taken before problems occur. The available correlations for pore pressure prediction depend on logging data, formation characteristics, and combination of logging and drilling parameters. The objective of this work is to apply artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) to introduce two models to estimate the formation pressure gradient in real-time through the available drilling data. The used parameters include rate of penetration (ROP), mud flow rate (Q), standpipe pressure (SPP), and rotary speed (RS). A data set obtained from some vertical wells was utilized to develop the predictive model. A different set of data was utilized for validating the proposed artificial intelligence (AI) models. Both models forecasted the output with a good correlation coefficient (R) for training and testing. Moreover, the average absolute percentage error (AAPE) did not exceed 2.1%. For validation stage, the developed models estimated the pressure gradient with a good accuracy. This study proves the reliability of the proposed models to estimate the pressure gradient while drilling using drilling data. Moreover, an ANN-based correlation is provided and can be directly used by introducing the optimized weights and biases, whenever the drilling parameters are available, instead of running the ANN model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference65 articles.

1. Mouchet, J. P. & Mitchell, A. Abnormal Pressures While Drilling (Elf Aquitaine, 1989).

2. Rabia, H. Well Engineering & Construction Hussain Rabia (Entrac Consulting, 2002).

3. Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K. & Damit, A. R. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. Am. Assoc. Petrol. Geol. Bull. 93, 51–74 (2009).

4. Zoback, M. D. Reservoir Geomechanics. Reservoir Geomechanics. https://doi.org/10.1017/CBO9780511586477 (Cambridge University Press, 2007).

5. Hottman, C. E. & Johnson, R. K. Estimation of formation pressures from log-derived shale properties. J. Petrol. Technol. 17, 1754 (1965).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3