Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database

Author:

Abbaszadeh Shahri Abbas12ORCID,Shan Chunling23,Larsson Stefan3,Johansson Fredrik3

Affiliation:

1. Johan Lundberg AB, 754 50 Uppsala, Sweden

2. Division of Rock Engineering, Tyrens, 118 86 Stockholm, Sweden

3. Division of Soil and Rock Mechanics, Royal Institute of Technology, KTH, 114 28 Stockholm, Sweden

Abstract

In the context of geo-infrastructures and specifically tunneling projects, analyzing the large-scale sensor-based measurement-while-drilling (MWD) data plays a pivotal role in assessing rock engineering conditions. However, handling the big MWD data due to multiform stacking is a time-consuming and challenging task. Extracting valuable insights and improving the accuracy of geoengineering interpretations from MWD data necessitates a combination of domain expertise and data science skills in an iterative process. To address these challenges and efficiently normalize and filter out noisy data, an automated processing approach integrating the stepwise technique, mode, and percentile gate bands for both single and peer group-based holes was developed. Subsequently, the mathematical concept of a novel normalizing index for classifying such big datasets was also presented. The visualized results from different geo-infrastructure datasets in Sweden indicated that outliers and noisy data can more efficiently be eliminated using single hole-based normalizing. Additionally, a relational unified PostgreSQL database was created to store and automatically transfer the processed and raw MWD as well as real time grouting data that offers a cost effective and efficient data extraction tool. The generated database is expected to facilitate in-depth investigations and enable application of the artificial intelligence (AI) techniques to predict rock quality conditions and design appropriate support systems based on MWD data.

Funder

Stiftelsen Bergteknisk Forskning (BeFo), Rock Engineering Research Foundation of Sweden

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3