Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM)-Attention-Based Prediction of the Amount of Silica Powder Moving in and out of a Warehouse

Author:

Guo Dudu12,Duan Pengbin3,Yang Zhen4,Zhang Xiaojiang5,Su Yinuo3

Affiliation:

1. School of Transportation Engineering, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Green Construction and Smart Traffic Control of Transportation Infrastructure, Xinjiang University, Urumqi 830017, China

3. School of Business, Xinjiang University, Urumqi 830017, China

4. Xinjiang Hualing Logistics & Distribution Co., Urumgi 830017, China

5. Xinjiang Xinte Energy Logistics Co., Urumqi 830017, China

Abstract

Raw material inventory control is indispensable for ensuring the cost reduction and efficiency of enterprises. Silica powder is an essential raw material for new energy enterprises. The inventory control of silicon powder is of great concern to enterprises, but due to the complexity of the market environment and the inadequacy of information technology, inventory control of silica powder has been ineffective. One of the most significant reasons for this is that existing methods encounter difficulty in effectively extracting the local and long-term characteristics of the data, which leads to significant errors in forecasting and poor accuracy. This study focuses on improving the accuracy of corporate inventory forecasting. We propose an improved CNN-BiLSTM-attention prediction model that uses convolutional neural networks (CNNs) to extract the local features from a dataset. The attention mechanism (attention) uses the point multiplication method to weigh the acquired features and the bidirectional long short-term memory (BiLSTM) network to acquire the long-term features of the dataset. The final output of the model is the predicted value of silica powder and the evaluation metrics. The proposed model is compared with five other models: CNN, LSTM, CNN-LSTM, CNN-BiLSTM, and CNN-LSTM-attention. The experiments show that the improved CNN-BiLSTM-attention prediction model can predict inbound and outbound silica powder very well. The accuracy of the prediction of the inbound test set is higher than that of the other five models by 7.429%, 11.813%, 15.365%, 10.331%, and 5.821%, respectively. The accuracy of the outbound storage prediction is higher than that of the other five models by 14.535%, 15.135%, 1.603%, 7.584%, and 18.784%, respectively.

Funder

Key Research and Development Program Project of the Department of Science and Technology of the Autonomous Region

the Science and Technology Program Project of the Bureau of Ecology, Environment and Industrial Development of Ganquanbao Economic and Technological Development Zone

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3