Offline Predictive Control of Out-of-Plane Shape Deformation for Additive Manufacturing

Author:

Jin Yuan1,Joe Qin S.2,Huang Qiang3

Affiliation:

1. Mork Family Department of ChemicalEngineering and Materials Science,University of Southern California,Los Angeles, CA 90089e-mail: yuanjin@usc.edu

2. Mork Family Department of ChemicalEngineering and Materials Science,University of Southern California,Los Angeles, CA 90089e-mail: sqin@usc.edu

3. Daniel J. Epstein Department of Industrial andSystems Engineering,University of Southern California,Los Angeles, CA 90089e-mail: qiang.huang@usc.edu

Abstract

Abstract Additive manufacturing (AM) is a promising direct manufacturing technology, and the geometric accuracy of AM built products is crucial to fulfill the promise of AM. Prediction and control of three-dimensional (3D) shape deformation, particularly out-of-plane geometric errors of AM built products, have been a challenging task. Although finite-element modeling has been extensively applied to predict 3D deformation and distortion, improving part accuracy based purely on such simulation still needs significant methodology development. We have been establishing an alternative strategy that can be predictive and transparent to specific AM processes based on a limited number of test cases. Successful results have been accomplished in our previous work to control in-plane (x–y plane) shape deformation through offline compensation. In this study, we aim to establish an offline out-of-plane shape deformation control approach based on limited trials of test shapes. We adopt a novel spatial deformation formulation in which both in-plane and out-of-plane geometric errors are placed under a consistent mathematical framework to enable 3D accuracy control. Under this new formulation of 3D shape deformation, we develop a prediction and offline compensation method to reduce out-of-plane geometric errors. Experimental validation is successfully conducted to validate the developed 3D shape accuracy control approach.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3