Exploitation of Acoustic Effects in Film Cooling

Author:

Collins Matthew1,Povey Thomas1

Affiliation:

1. Osney Thermofluids Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK e-mail:

Abstract

There have been numerous studies of the behavior of shaped film cooling holes for turbine applications. It is known that the introduction of coolant is an unsteady process, and a handful of studies have described and characterized the unsteadiness. To the best of our knowledge, there are no studies in which unsteady acoustic effects have been actively exploited such that they have led to novel designs with improved cooling performance. This paper discusses the fundamental mechanism of pressure wave propagation through cooling holes and describes systems in which holes which have been acoustically shaped have led to a direct improvement in film cooling hole performance. The mechanism relies on sequential pressure wave reflection within an acoustically shaped hole and is therefore applicable in regions where the external surface is subject to large pressure wave fluctuations at high frequency. The principle is developed analytically, and then demonstrated with a number of computational fluid dynamics (CFD) simulations. We demonstrate that a desired temporal mass flow rate profile can be achieved by appropriate acoustic shaping of the cooling hole. The purpose of this paper is to describe the fundamental design considerations relevant to acoustic shaping. The discussion is developed with reference to a film cooling system for the over-tip region of an unshrouded rotor. The performance benefit of the system in terms of modulation of unsteady mass flux and ingestion characteristics is quantified. It is believed that this is the first time this significant effect has been exploited in film cooling design.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Novel Turbine Rotor Shroud Film-Cooling Design and Validation, Part 1,2009

2. Turbine Shroud Asymmetrical Cooling Elements,2003

3. Novel Turbine Rotor Shroud Film-Cooling Design and Validation, Part 2,2009

4. Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage;ASME J. Turbomach.,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3