Board-Level Solder Joint Reliability Study of Land Grid Array Packages for RF Application Using a Laser Ultrasound Inspection System

Author:

Yang Jin12,Zhang Lizheng2,Ume I. Charles32,Ghiu Camil4,White George4

Affiliation:

1. Mem. ASME

2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

3. Fellow ASME

4. Jacket Micro Devices, Inc., Atlanta, GA 30308

Abstract

Microelectronics packaging technology has evolved from through-hole, and bulk configuration to surface-mount, and small-profile ones. Today’s electronics industry is also transiting from SnPb to Pb-free to meet environmental requirements. Land grid array (LGA) package has been becoming popular in portable electronics in terms of low profile on the printed wiring boards and direct Pb-free assembly process compatibility. With the package profile shrinking and operating power increasing, solder joint quality and reliability has become a major concern in microelectronics manufacturing. The solder joint failure at the package level or board level will cause electronic devices not to function during service. In this paper, board-level solder joint reliability of the LGA packages under thermal loading is studied through thermal cycling tests. A novel laser ultrasound-interferometric system developed by the authors is applied to inspect solder joint quality during the thermal cycling tests. While the laser ultrasound inspection technique has been successfully applied to flip chips and chip scale packages, this study is the first application of this technique to overmolded packages. In this study, it is found out that the LGA packages can withstand 1000 temperature cycles without showing crack initiation or other failure mechanisms in the solder joints. The laser ultrasound inspection results match the visual observation and X-ray inspection results. This study demonstrates the feasibility of this system to solder joint quality inspection of overmolded packages. In particular, the devices constituting the objective of this study are radio frequency modules, which are encapsulated through overmolding and are mounted on a typical four-layer FR4 board through LGA terminations.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3