Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach

Author:

Jiang Youshi1,Dahi-Taleghani Arash2

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

2. Department of Energy and Mineral Engineering, Pennsylvania State University, State College, PA 16801 e-mail:

Abstract

Fluid flow in fractured porous media has always been important in different engineering applications especially in hydrology and reservoir engineering. However, by the onset of the hydraulic fracturing revolution, massive fracturing jobs have been implemented in unconventional hydrocarbon resources such as tight gas and shale gas reservoirs that make understanding fluid flow in fractured media more significant. Considering ultralow permeability of these reservoirs, induced complex fracture networks play a significant role in economic production of these resources. Hence, having a robust and fast numerical technique to evaluate flow through complex fracture networks can play a crucial role in the progress of inversion methods to determine fracture geometries in the subsurface. Current methods for tight gas flow in fractured reservoirs, despite their advantages, still have several shortcomings that make their application for real field problems limited. For instance, the dual permeability theory assumes an ideal uniform orthogonal distribution of fractures, which is quite different from field observation; on the other hand, numerical methods like discrete fracture network (DFN) models can portray the irregular distribution of fractures, but requires massive mesh refinements to have the fractures aligned with the grid/element edges, which can greatly increase the computational cost and simulation time. This paper combines the extended finite element methods (XFEM) and the gas pseudo-pressure to simulate gas flow in fractured tight gas reservoirs by incorporating the strong-discontinuity enrichment scheme to capture the weak-discontinuity feature induced by highly permeable fractures. Utilizing pseudo-pressure formulations simplifies the governing equations and reduces the nonlinearity of the problem significantly. This technique can consider multiple fracture sets and their intersection to mimic real fracture networks on a plain structured mesh. Here, we utilize the unified Hagen–Poiseuille-type equation to compute the permeability of tight gas, and finally adopt Newton–Raphson iteration method to solve the highly nonlinear equations. Numerical results illustrate that XFEM is considerably effective in fast calculation of gas flow in fractured porous media.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3