Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures

Author:

Dahi-Taleghani Arash1,Olson Jon E.2

Affiliation:

1. Louisiana State University

2. University of Texas at Austin

Abstract

Summary Recent examples of hydraulic-fracture diagnostic data suggest that complex, multistranded hydraulic-fracture geometry is a common occurrence. This reality is in stark contrast to the industry-standard design models based on the assumption of symmetric, planar, biwing geometry. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Performing hydraulic-fracture-design calculations under these less-than-ideal conditions requires modeling fracture intersections and tracking fluid fronts in the network of reactivated fissures. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We present a complex hydraulic-fracture pattern propagation model based on the extended finite-element method (XFEM) as a design tool that can be used to optimize treatment parameters under complex propagation conditions. Results demonstrate that fracture-pattern complexity is strongly controlled by the magnitude of anisotropy of in-situ stresses, rock toughness, and natural-fracture cement strength, as well as the orientation of the natural fractures relative to the hydraulic fracture. Analysis shows that the growing hydraulic fracture may exert enough tensile and shear stresses on cemented natural fractures that the latter may be debonded, opened, and/or sheared in advance of hydraulic-fracture-tip arrival, while under other conditions, natural fractures will be unaffected by the hydraulic fracture. Detailed aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture-propagation conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3