Contrasting the Pyrolysis Behavior of Selected Biomass and the Effect of Lignin

Author:

Zhang Zhezi1,Zhu Mingming1,Hobson Philip2,Doherty William2,Zhang Dongke3

Affiliation:

1. Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia e-mail:

2. Sugar Research and Innovation, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane 4001, Queensland, Australia e-mail:

3. Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia, e-mail:

Abstract

This study was aimed at comparing the pyrolysis behavior of several selected biomass samples, namely, pine wood, poplar wood, wheat straw, and sugarcane bagasse, with a particular attention to the effect of lignin. Raw samples were first treated using Soxhlet solvent extraction with a 2:1 (v/v) mixture of toluene/ethanol to remove wax. Lignin was then removed by soaking the dewaxed samples in a 1.0 M sodium chlorite solution at 343 K till the solids became white. Fourier transform infrared (FTIR) spectroscopy analysis was applied to characterize the surface functional groups of the samples. The morphology of the samples before and after delignification treatment was analyzed using scanning electron microscope (SEM). The pyrolysis behavior of the raw and treated biomass samples was studied using a thermogravimetric analyzer (TGA) operating in nitrogen at a constant heating rate of 10 K min−1 from room temperature to the final temperature 823 K. The FTIR and SEM results indicated that lignin can be successfully removed from the raw biomass via the chemical treatment used. As expected, the pyrolysis behavior differed significantly among the various raw biomass samples. However, the pyrolysis behavior of the delignified samples showed almost identical thermal behavior although the temperature associated with the maximum rate of pyrolysis was shifted to a lower temperature regime by ca. 50 K. This suggests that the presence of lignin significantly affected the biomass pyrolysis behavior. Thus, the pyrolysis behavior of the biomass cannot be predicted simply from the individual components without considering their interactions.

Funder

Australian Research Council

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3