Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass

Author:

Mayor J. Rhett12,Williams Alexander2

Affiliation:

1. Mem. ASME

2. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 813 Ferst Drive, Atlanta, GA 30332

Abstract

Bio-oils were produced within a fast pyrolysis microreactor at 400°C from Pinus taeda (Loblolly pine) with varying residence times. This study has considered six residence times, evaluating the products of the reaction between 10 s and 120 s. The collected bio-oils and solids were analyzed for their calorific values and yields. Heating rates greater than 100°C/s were achieved, allowing for isothermal conditions throughout the majority of the reaction despite short residence times. The predictive capabilities of thermogravimetric analysis derived Arrhenius coefficients are evaluated and a new two component degradation model is empirically derived, showing a much improved representation of the fast pyrolysis process.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3