Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
2. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India e-mail:
Abstract
A large eddy simulation (LES) of an incompressible spatially developing circular jet at a Reynolds number of 10,000 is performed. The shear-improved Smagorinsky model (Lévêque et al., 2007, “A Shear-Improved Smagorinsky Model for the Large-Eddy Simulation of Wall-Bounded Turbulent Flows,” J. Fluid Mech., 570, pp. 491–502) is used for the resolution of the subgrid stress tensor within the filtered three-dimensional unsteady Navier–Stokes equations. Higher-order spatial and temporal discretization schemes are used for capturing the details of the turbulent flow field. With the help of instantaneous and time-averaged flow data, the spatial transition from the laminar state to the turbulent is analyzed. Flow structures are visualized using isosurfaces of the Q-criterion. Instantaneous flow patterns show single tearing and multiple pairing processes. Tracing individual vortex rings over a longer time period, a detailed understanding of the vortex interaction is revealed. The observed trends and the length of the potential core are in conformity with the findings of earlier experiments. The time-averaged axial velocity profile shows that the jet attains self-similarity and the computed profile matches well with the experimental results of Hussein et al. (1994, “Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet,” J. Fluid Mech., 258, pp. 31–75). The centerline decay of the velocity and entrainment rate are in agreement with published experiments. The Reynolds stress components u'u'¯, v'v'¯, and u'v'¯ and the third-order velocity moment are in good agreement with thr experimental results, thus confirming the validity of the present simulation.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献