Luminescence anisotropy and vorticity magnitude of a free turbulent jet

Author:

Schmidt Markus J.ORCID,Rösgen Thomas

Abstract

In the field of experimental fluid dynamics, the direct measurement of vorticity remains a challenge, even though it plays a crucial role in understanding turbulent flows. The present study explores the influence of the rotation of nanoparticles on their luminescence anisotropy as a potential novel measurement method. This relation opens a new field of flow diagnostics, based on the measurement of polarized intensity components. Potentially, the method allows for the direct measurement of the vorticity. For this, the canonical flow in this study is a turbulent round jet at ${{Re}} = {12\,000}$ and 14 400. It is confirmed that the flow regime has an influence on the luminescence anisotropy. Using a model of such deterministic rotations according to another work by the authors (Schmidt & Rösgen, Phys. Rev. Res., vol. 5, no. 3, 2023, 033006), the magnitude of the vorticity components is computed, since the presented set-up is limited to sensing the magnitude of these quantities. The computed components indicate the self-similarity of the vorticity magnitude. A large-eddy simulation is conducted for comparison with the experiments, demonstrating good agreement.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3