Wrinkling of Tubes by Axial Cycling

Author:

Jiao Rong1,Kyriakides Stelios1

Affiliation:

1. Research Center for Mechanics of Solids, Structures and Materials, WRW 110, C0600, The University of Texas at Austin, Austin, TX 78712

Abstract

Circular tubes compressed into the plastic range first buckle into axisymmetric wrinkling. Initially, the wrinkle amplitude grows with increasing load, but induces a gradual reduction in axial rigidity that eventually leads to a limit load instability and collapse. For lower D/t tubes, the two instabilities can be separated by strain levels of a few percent. Persistent stress-controlled cycling can cause accumulation of deformation by ratcheting. Here, the interaction of ratcheting and wrinkling is investigated. In particular, it is asked if compressive ratcheting can first initiate wrinkling and then grow it to amplitudes associated with collapse. Experiments on SAF2507 super-duplex steel tubes with D/t of 28.5 have shown that a geometrically intact tube cycled under stress control initially deforms uniformly due to material ratcheting. However, in the neighborhood of the critical wrinkling strain under monotonic loading, small amplitude axisymmetric wrinkles develop. This happens despite the fact that the maximum stress of the cycles can be smaller than the critical stress under monotonic loading. In other words, wrinkling appears to be strain rather than stress driven, as is conventionally understood. Once the wrinkles are formed, their amplitude grows with continued cycling, and as a critical value of amplitude is approached, wrinkling localizes, the rate of ratcheting grows exponentially, and the tube collapses. Interestingly, collapse was also found to occur when the accumulated average strain reaches the value at which the tube localizes under monotonic compression. A custom shell model with small initial axisymmetric imperfections, coupled to a cyclic plasticity model, is used to simulate these cyclic phenomena successfully.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical and Numerical Investigations of Circular Metal Foam Sandwich Tube Under Free Inversion;Journal of Applied Mechanics;2023-07-17

2. Wrinkling and Collapse of Tubes by Axial Cyclic Loading;Mechanics of Offshore Pipelines : Volume i;2023

3. Preface to the Special Issue on the Occasion of Professor Stelios Kyriakides’ 70th Birthday;International Journal of Solids and Structures;2022-12

4. Structural response of steel lined pipes under cyclic bending;International Journal of Solids and Structures;2022-01

5. Collapse of HSLA steel pipes under corrosion exposure and uniaxial inelastic cycling;Journal of Constructional Steel Research;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3