Plastic Buckling of Various Shells

Author:

Bushnell D.1

Affiliation:

1. Lockheed Palo Alto Research Laboratory, Palo Alto, Calif. 94304

Abstract

The phenomenon of plastic buckling is first illustrated by the behavior of a fairly thick cylindrical shell, which under axial compression deforms at first axisymmetrically and later nonaxisymmetrically. Plastic buckling encompasses two modes of behavior, nonlinear collapse at the maximum point in a load versus deflection curve and bifurcation buckling. Accurate prediction of critical loads corresponding to either mode in the plastic range requires a simultaneous accounting for moderately large deflections and nonlinear, irreversible, path-dependent material behavior. A thumbnail survey is given of plastic buckling which spans three areas: asymptotic analysis of postbifurcation behavior of perfect and imperfect simple structures, general nonlinear analysis of arbitrary structures, and nonlinear analysis for collapse and bifurcation buckling of shells and bodies of revolution. Comparisons between test and theory are presented for elastic-plastic buckling of axially compressed unstiffened and ring-stiffened cylindrical shells, internally pressurized torispherical and ellipsoidal pressure vessel heads, and pipes under combined external pressure and bending. The effect on buckling of fabrication processes such as cold forming and welding is discussed for the case of ring-stiffened cylindrical shells. Two examples are given of rather complex shell structures in which considerations of plastic buckling affect the design.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3