NASA's Role in Gas Turbine Technology Development: Accelerating Technical Progress Via Collaboration Between Academia, Industry, and Government Agencies

Author:

Suder Kenneth L.1

Affiliation:

1. National Aeronautics and Space Administration, Glenn Research Center, Propulsion Division, 21000 Brookpark Road, MS 5-3, Cleveland, OH 44135

Abstract

Abstract Given the maturity of the gas turbine engine since its invention and considering the limited resources expected to be allocated for NASA aeronautics research and development, we ask the question are NASA technology investments still needed to enable future turbine engine-based propulsion systems? If so, what is NASA's unique role to justify NASA's investment? To address this topic, we first summarize NASA's role and contributions to turbine engine development, specific to both (1) NASA's role in conducting experiments to understand flow physics and provide relevant benchmark validation experiments for computational fluid dynamics (CFD) code development, validation, and assessment and (2) the impact of technologies resulting from NASA collaborations with industry, academia, and other government agencies. Note that the scope of the discussion is limited to the NASA technology contributions with which the author was intimately associated and does not represent the entirety of the NASA contributions to turbine engine technology. The specific research, development, and demonstrations discussed herein were selected to both (1) provide a comprehensive review and reference list of the technology and its impact and (2) identify NASA's unique role and highlight how NASA's involvement resulted in additional benefit to the gas turbine engine community. Second, we will discuss current NASA collaborations that are in progress and provide a status of the results. Finally, we discuss the challenges anticipated for future turbine engine-based propulsion systems for civil aviation and identify potential opportunities for collaboration where NASA involvement would be beneficial.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3