Advances in aerodynamics of power turbines for marine and aviation applications

Author:

Gao Jie1ORCID,Zhao Tianxiao1,Wu Siyu1,Ouyang Yuqing2,Niu Xiying3,Zheng Qun1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

2. Turbine Department, Hunan Power Machinery Research Institute, Zhuzhou, China

3. Division of Gas Turbine, Harbin Marine Boiler and Turbine Research Institute, Harbin, China

Abstract

The use of power turbines has the advantage of flexible output load adjustment, and is a major configuration of marine gas turbines and aviation turboshaft/turboprop engines. Marine gas turbines and aviation turboshafts and turboprop engines generally have multiple working states and multiple working conditions change laws, which cause the aerodynamic performance of power turbines to fluctuate greatly with changes in working conditions, and different variable working conditions have a severe impact on the turbine loss characteristics. Therefore, it is necessary to deeply understand the internal flow mechanism of power turbines under off-design working conditions in different power turbine application modes, and carry out researches on the design methods of power turbines under wide working conditions. This paper summarizes and analyzes the recent advances in the field of aerodynamics of power turbines for marine and aviation applications. This review covers the following topics that are important for power turbine designs: (1) turbine flow loss prediction models under multiple operating conditions, (2) aerodynamic design and flow mechanism of power turbines for marine gas turbines, (3) aerodynamics of variable speed power turbines for turboshaft/turboprop engines, and (4) other issues about power turbines for marine and turboshaft/turboprop engines. The emphasis is placed on the aerodynamic design and flow mechanism of marine and aviation power turbines. We also present our own insights regarding the current research trends and the prospects for future developments.

Funder

Heilongjiang Outstanding Youth Science Foundation of China

national natural science foundation of china

National Key S&T Special Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3