Numerical Study of Droplet Evaporation in a High-Temperature Stream

Author:

Renksizbulut M.1,Yuen M. C.1

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Northwestern University, Evanston, Ill. 60201

Abstract

Numerical solutions for high-temperature air flowing past water and methanol droplets and solid spheres, and superheated steam flowing past water droplets were obtained in the Reynolds number range of 10 to 100. The coupled momentum, energy, and specie continuity equations of variable thermophysical properties were solved using finite difference techniques. The numerical results of heat transfer and total drag agree well with existing experimental data. Mass transfer decreases friction drag significantly but at the same time increases pressure drag by almost an equal amount. The net effect is that the standard drag curve for solid spheres can be used for evaporating droplets provided the density is the free stream density and the viscosity of the vapor mixture is evaluated at an appropriate reference temperature and concentration. Both the mass efflux and variable properties decrease heat transfer rates to the droplets.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3