Microgravity Spherical Droplet Evaporation and Entropy Effects

Author:

Madani Seyedamirhossein1ORCID,Depcik Christopher1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA

Abstract

Recent efforts to understand low-temperature combustion (LTC) in internal combustion engines highlight the need to improve chemical kinetic mechanisms involved in the negative temperature coefficient (aka cool flame) regime. Interestingly, microgravity droplet combustion experiments demonstrate this cool flame behavior, allowing a greater focus on chemistry after buoyancy, and the corresponding influence of the conservation of momentum is removed. In Experimental terms, the LTC regime is often characterized by a reduction in heat transfer losses. Novel findings in this area demonstrate that lower entropy generation, in conjunction with diminished heat transfer losses, could more definitively define the LTC regime. As a result, the simulation of the entropy equation for spherical droplet combustion under microgravity could help us to investigate fundamental LTC chemical kinetic pathways. To provide a starting point for researchers who are new to this field, this effort first provides a comprehensive and detailed derivation of the conservation of entropy equation using spherical coordinates and gathers all relevant information under one cohesive framework, which is a resource not readily available in the literature. Subsequently, the well-known d2 law analytical model is determined and compared to experimental data that highlight shortcomings of the law. The potential improvements in the d2 law are then discussed, and a numerical model is presented that includes entropy. The resulting codes are available in an online repository to ensure that other researchers interested in expanding this field of work have a fundamental starting point.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3