Effect of Cyclic Strain on the Mechanical Behavior of a Thermoplastic Polyurethane

Author:

Avanzini A.1,Gallina D.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy

Abstract

Thermoplastic polyurethanes (TPUs) are polymeric materials employed in a wide array of applications in the industrial field. Knowledge of their mechanical behavior is essential in order to obtain an accurate prediction of stresses and deformations resulting from loading. Mechanical and physical properties of these materials have been studied in the past, but their stress-strain behavior in the presence of cyclic loading has comparatively received much less attention. In this paper, experimental and constitutive modeling aspects concerning cyclic mechanical response of a TPU are investigated. The effect of imposing a cyclic strain on a TPU is studied by means of an experimental procedure based on alternate-symmetric tests in strain control at different strain levels and frequencies. During the tests, the increase in temperature due to the hysteretic heating can also be controlled by means of a compressed air cooling apparatus specifically devised. By taking advantage of the possibility of controlling and stabilizing temperature, the cyclic mechanical response can then be investigated at different temperatures and strain levels. A transient thermal analysis using finite element method (FEM) was also carried out to investigate temperature distribution on the specimen. TPU exhibited cyclic softening, and by comparing stabilized material response at different temperatures, cyclic softening was shown to be composed of a mechanical contribution and a thermal component. The TPU’s stress-strain curve changed considerably under cyclic loading conditions. In particular, cyclic softening was observed to increase with temperature and imposed cyclic strain, with a progressive shrinking of hysteresis loop passing from virgin condition to stabilized cyclic condition. Based on the experimental data, the cyclic curve could be determined as a function of temperature and could be fitted with a hyperelastic law in which material parameters are temperature dependent. The TPU exhibited significant sensitivity to cyclic loading, and this study demonstrated the importance of considering mechanical response in cyclic condition for design purposes. In particular, the identification of mechanical and thermal contributions to cyclic softening can be useful when studying fatigue failure mechanisms of these materials. Knowledge of cyclic curve can help when developing constitutive model for polymers to better predict a long-term behavior when cyclic loading is expected. The introduction of a dependence of cyclic curve on temperature allows considering simultaneously the new “material state” of the cycled polymer and, with some limitations, the thermal influence on mechanical response.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3