Abstract
Additive manufacturing technologies allow the fabrication of smart objects, which are made up of a dielectric part and an embedded sensor able to give real-time feedback to the final user. This research presents the characterization of a low-cost 3D-printed strain sensor, fabricated using material extrusion (MeX) technology by using a conductive material composed of a polylactic acid (PLA)-based matrix doped with carbon black and carbon nanotubes (CNT), thus making the plastic conductive. A suitable measurement set-up was developed to perform automatic characterization tests using a high repeatability industrial robot to define either displacement or force profiles. The correlation between the applied stimulus and the variation of the electrical resistance of the 3D-printed sensor was evaluated, and an approach was developed to compensate for the effect of temperature. Results show that temperature and hysteresis affect repeatability; nevertheless, the sensor accurately detects impulse forces ranging from 10 g to 50 g. The sensor showed high linearity and exhibited a sensitivity of 0.077 Ω g−1 and 12.54 Ω mm−1 in the force and displacement range of 114 g and 0.7 mm, respectively, making them promising due to their low cost, ease of fabrication, and possible integration into more complex devices in a single-step fabrication cycle.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献