Investigation of Riblet Geometry and Start Locations of Herringbone Riblets on Pressure Losses in a Linear Cascade at Low Reynolds Numbers

Author:

Liu Qiang1,Zhong Shan1,Li Lin1

Affiliation:

1. Department of Mechanical, Aerospace and Civil Engineering, Manchester University, Manchester M13 9PL, UK

Abstract

Abstract In this paper, the effects of an array of herringbone riblets with different riblet geometry (height and spacing) and start locations on the pressure losses in a cascade of diffuser blades are investigated over a range of low Reynolds numbers (0.50 × 105–1.00 × 105). The herringbone riblets with a given geometry are found to produce a profound modification to the wake structure above certain critical Reynolds numbers. It is also found that within the range of parameters tested an increase in riblet height and riblet spacing results in an onset of significant control effect at a lower Reynolds number, which is accompanied by a slight reduction in zone-averaged loss coefficient and flow turning angle. An upstream shift of the start position of the riblet array along the blades enables the riblets to become effective at a lower Reynolds number at the expense of a reduced loss reduction and flow turning angle. A semi-empirical relationship between the ratio of riblet height to local baseline boundary layer displacement thickness and the critical Reynolds number is established using the present experimental data. A preliminary methodology for designing the herringbone riblets to ensure an effective control of 2D flow separations around the mid-span of diffuser blades over a specified range of Reynolds numbers is also proposed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3