Indifference Computer Experiment for Mathematical Identification of Two Variables

Author:

Yu Jianxi1ORCID

Affiliation:

1. Henan Institute of Economics and Trade, Zhengzhou, Henan 450018, China

Abstract

In order to understand the two types of nonlinear differential equation problems in engineering dynamics, the author proposes a numerical analysis method for the two types of nonlinear differential equations based on computer simulation. This method establishes the MATLAB algorithm structure of the numerical solution of the fourth-order fixed-step Runge-Kutta and Lorenz models, discusses the error control in the case of variable step size, and plots the numerical solutions of the Lorenz system based on MATLAB in two-dimensional and three-dimensional space graphics. The x -direction displacement and y -direction displacement data are extracted from the Lorenz equation as iterative samples of the model, the regression curve obtained after iteration has a slope of 0.996, and the iterative regression model reflects the basic characteristics of the data well. This method presents the basic idea of numerical solution verification within acceptable error limits. For solving engineering problems with differential equations as mathematical models, an effective numerical solution method is provided, and further discussion on the numerical solutions of partial differential equations is of great significance.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power demand estimation techniques applied to microgrid;International Journal of Ambient Energy;2024-01-25

2. Retracted: Indifference Computer Experiment for Mathematical Identification of Two Variables;Wireless Communications and Mobile Computing;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3