Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries

Author:

Cavalheiro Gabriel M.1,Iriyama Takuto1,Nelson George J.1,Huang Shan1,Zhang Guangsheng1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899

Abstract

Abstract The effects of nonuniform temperature distribution on the degradation of lithium-ion (Li-ion) batteries are investigated in this study. A Li-ion battery stack consisting of five 3 Ah pouch cells connected in parallel was tested for 2215 cycles and compared with a single baseline cell. The behaviors of temperature distribution, degradation, and current distribution of the stack were characterized and discussed. Results supported the hypothesis that nonuniform temperature distribution causes nonuniform and accelerated degradation. All cells in the stack experienced higher temperature rise and degraded faster than the baseline cell. In particular, capacity retention of the middle cell in the stack decreased to 50.7% after 2215 cycles, while the baseline cell capacity retention was still 87.8%. The resistance of cells in the stack experienced nonuniform but similar pattern of variation with cycling. The resistances remained stable in early cycles, then experienced a rapid increase, and then became stable again. The middle cell resistance increased abruptly in the last 20 cycles before failure. Current distribution behaviors of the stack also changed significantly during cycling, which was consistent with cell resistance behaviors. The middle cell experienced much higher C rate than average, suggesting that its accelerated degradation can be attributed to the synergized effects of higher local temperature and higher local current.

Funder

University of Alabama in Huntsville

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference36 articles.

1. Rate-Based Degradation Modeling of Lithium-Ion Cells;Thomas;J. Power Sources,2012

2. Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries—A Control Perspective;Smith

3. Degradation Diagnostics for Lithium Ion Cells;Birkl;J. Power Sources,2017

4. Degradation Mechanisms in Li-Ion Batteries: A State-of-the-Art Review;Kabir;Int. J. Energy Res.,2017

5. Inhomogeneous Degradation of Graphite Anodes in Automotive Lithium Ion Batteries Under Low-Temperature Pulse Cycling Conditions;Burow;J. Power Sources,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3