Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries

Author:

Sarker Md. Tanjil1ORCID,Haram Mohammed Hussein Saleh Mohammed1ORCID,Shern Siow Jat1,Ramasamy Gobbi1,Al Farid Fahmid2ORCID

Affiliation:

1. Centre for Electric Energy and Automation, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia

2. Centre for Digital Home, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia

Abstract

The potential of renewable energy sources to lower greenhouse gas emissions and lessen our reliance on fossil fuels has accelerated their integration globally, and especially that of solar photovoltaic (PV) systems. Malaysia has shown great progress in the adoption of photovoltaic systems thanks to its plentiful solar resources. On the other hand, energy storage systems (ESSs) are becoming more and more necessary in order to guarantee grid stability and fully realize the benefits of PV systems. This study attempts to assess the current condition of PV installations in Malaysia with an emphasis on their economic feasibility, regulatory compliance, technological capabilities, and compatibility with various energy storage technologies. Malaysian photovoltaic (PV) systems’ readiness to integrate energy storage systems (ESSs) using second-life electric vehicle batteries (SLEVBs) is examined in this article. Integrating PV systems with SLEVBs in residential ESSs shows economic viability, with a 15-year payback and 25% return on investment (ROI). Therefore, for every 1 MW of installed PV capacity, with ESS integration it is estimated to reduce approximately 3504 metric tons of CO2 emissions annually in Malaysia. The homeowner benefits from large electricity bill savings, net metering revenue, and various incentives or financing alternatives that make the project financially attractive despite the extended payback time. Energy storage solutions are needed to improve grid stability, energy usage, and solar power generation in Malaysia as renewable energy adoption increases. Reusing retired EV batteries for stationary storage could solve environmental and economic issues. This study examines the feasibility, regulatory frameworks, and economic viability of combining second-life EV batteries with PV installations in Malaysia.

Funder

Multimedia University

Publisher

MDPI AG

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3