The Precise Determination of the Johnson–Cook Material and Damage Model Parameters and Mechanical Properties of an Aluminum 7068-T651 Alloy

Author:

Bal B.1,Karaveli K. K.1,Cetin B.2,Gumus B.3

Affiliation:

1. Department of Mechanical Engineering, Abdullah Gül University, 38080 Kayseri, Turkey e-mail:

2. FNSS Defense Systems Co., Inc., Golbasi, 06830 Ankara, Turkey e-mail:

3. ASELSAN A.Ş., 06370 Ankara, Turkey e-mail:

Abstract

Al 7068-T651 alloy is one of the recently developed materials used mostly in the defense industry due to its high strength, toughness, and low weight compared to steels. The aim of this study is to identify the Johnson–Cook (J–C) material model parameters, the accurate Johnson–Cook (J–C) damage parameters, D1, D2, and D3 of the Al 7068-T651 alloy for finite element analysis-based simulation techniques, together with other damage parameters, D4 and D5. In order to determine D1, D2, and D3, tensile tests were conducted on notched and smooth specimens at medium strain rate, 100 s−1, and tests were repeated seven times to ensure the consistency of the results both in the rolling direction and perpendicular to the rolling direction. To determine D4 and D5 further, tensile tests were conducted on specimens at high strain rate (102 s−1) and temperature (300 °C) by means of the Gleeble thermal–mechanical physical simulation system. The final areas of fractured specimens were calculated through optical microscopy. The effects of stress triaxiality factor, rolling direction, strain rate, and temperature on the mechanical properties of the Al 7068-T651 alloy were also investigated. Damage parameters were calculated via the Levenberg–Marquardt optimization method. From all the aforementioned experimental work, J–C material model parameters were determined. In this article, J–C damage model constants, based on maximum and minimum equivalent strain values, were also reported which can be utilized for the simulation of different applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Light Weight Materials for Automotive Applications;Cole;Mater. Charact.,1995

2. Aluminium: Physical Properties, Characteristics and Alloys;Cobden;Talat Lecture,1994

3. Light Metals and Alloys: Aluminum and Aluminum Alloys;Davis,2001

4. Recent Developments in Advanced Aircraft Aluminium Alloys;Dursun;Mater. Des,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3