Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding

Author:

Jamshidi Aval Hamed1ORCID

Affiliation:

1. Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran

Abstract

The present study investigates thermo-mechanical issues associated with the dissimilar friction stir welding process of AA6061 and AA5086 aluminum alloys through smoothed-particle hydrodynamics (SPH) simulation and experimental investigations. The results demonstrate that the presented model accurately predicts the thermal history during the friction stir welding process. Furthermore, both simulation and experimental data indicate that when the AA6061 alloy is located on the advancing side, the temperature profile is drawn towards the AA6061 alloy. Conversely, the temperature profile is more symmetrical when the AA6061 alloy is positioned on the retreating side. Additionally, simulation results reveal that when the AA5086 alloy is on the advancing side, the strain rate distribution between the advancing and retreating sides is nearly symmetrical. When the AA5086 alloy is placed on the advancing side, the temperature and strain rate on the advancing side are higher than on the retreating side, compared to when the AA5086 alloy is located on the retreating side.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3