Effect of Geometrical Parameters on Vortex-Induced Vibration of a Splitter Plate

Author:

Pärssinen T.1,Eloranta H.2,Saarenrinne P.2

Affiliation:

1. Metso, Inc., P. O. Box 587, FIN-40101 Jyväskylä, Findland

2. Institute of Energy and Process Engineering, Tampere University of Technology, P.O. Box 589, FIN-33101 Tampere, Finland

Abstract

An experimental study on the effects of various geometrical parameters to the characteristics of vortex-induced vibration (VIV) of a splitter plate is presented. The dynamic response of the fluid-structure system was measured using particle image velocimetry and laser telemetry simultaneously. Combined data of these techniques allow the assessment of the variation in the VIV response due to geometrical parameters, such as channel geometry, aspect ratio (AR), and trailing-edge thickness (d) as well as the imprint of the excited vibration mode on the flow. The effects of AR and d were both investigated with three different plate geometries and the effect of channel convergence was studied with a single plate geometry. Measurements were performed over a range of Reynolds numbers (Re). The results show that the vibrational response of the combined fluid-structure system is affected by the VIV instability in all cases. Within the measured Re range, a characteristic stepwise behavior of the frequency of the dominant vibration mode is observed. This behavior is explained by the synchronization between the vortex shedding frequency (f0) and a natural frequency (fN) of the fluid-structure system. The results further indicate that this response is modified by geometrical parameters. Channel convergence, i.e., flow acceleration, enhances the vortex shedding, which, in turn, increases the excitation level leading to stronger VIV. Channel convergence does not have a significant effect on f0 or on the dimensionless vibration amplitude (A∕d). An increase of both the number of excited fN’s and the level of synchronization was observed with the lowest AR case. The results also suggest that d is the dominant geometrical parameter. It reduces both the A∕d of the plate and the number of synchronization regions. This stronger effect on the response of the VIV system is due to the direct effect of d on the excitation mechanism.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3