Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations

Author:

EVANGELINOS CONSTANTINOS,KARNIADAKIS GEORGE EM

Abstract

We present simulation results of vortex-induced vibrations of an infinitely long flexible cylinder at Reynolds number Re = 1000, corresponding to a ‘young’ turbulent wake (i.e. exhibiting a small inertial subrange). The simulations are based on a new class of spectral methods suitable for unstructured and hybrid grids. To obtain different responses of the coupled flow–structure system we vary the structure's bending stiffness to model the behaviour of a vibrating inflexible (rigid) cylinder, a cable, and a beam. We have found that unlike the laminar flow previously studied, the amplitude of the cross-flow oscillation is about one diameter for the cable and the beam, close to experimental measurements, but is lower for the rigid cylinder. We have also found that for the latter case the flow response corresponds to parallel shedding, but for the beam and cable with free endpoints a mixed response consisting of oblique and parallel shedding is obtained, caused by the modulated travelling wave motion of the structure. This mixed shedding pattern which alternates periodically along the span can be directly related to periodic spatial variation of the lift force. In the case of structures with pinned endpoints a standing wave response is obtained for the cylinder; lace-like flow structures are observed similar to the ones seen in the laminar regime. Examination of the frequency spectra in the near wake shows that at Re = 1000 all cases follow a −5/3 law in the inertial range, which extends about half a decade in wavenumber. However, these spectra are different in all three cases both in low and high frequencies, with the exception of the beam and cable, for which the high-frequency portion is identical despite the differences in the displacement time history and the large-scale features of the corresponding flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3