Exploring synchronization and lift suppression in fluid flow around vibrating cylinder: a parallel CFD and global optimization investigation

Author:

Mehmood Arshad,Salah Bashir,Ullah Syed Sajid,Khan Shahbaz,Khan Razaullah

Abstract

In this study, we employ a parallel Computational Fluid Dynamics (CFD) code integrated with the VTDIRECT95 algorithm, a parallel deterministic global optimization method, to conduct global optimization for an oscillating circular cylinder. We conduct numerical simulations for the flow at a Reynolds number of 500 within the parameter range of 0.1Ax0.3 and 0.5fstfex2.5fst where Ax represents the inline oscillating amplitude, fex denotes the forcing oscillation frequency, and fst corresponds to the frequency of a stationary cylinder. To enhance computational efficiency, a combination of VTdirect and a CFD solver is utilized to efficiently identify the synchronization region, thereby reducing computational resources. The results reveal a significant reduction in the lift coefficient within the synchronized region compared to unsynchronized regimes. Furthermore, the study delves into the underlying flow physics behind synchronization and lift suppression. By synchronizing the shedding of vortices, their detrimental effects are nullified, resulting in a reduction in lift. Moreover, the research examines the influence of three-dimensional (3-D) flow by comparing 2-D and 3-D simulations at two different Reynolds numbers. It demonstrates that accounting for 3-D effects yields more accurate predictions of fluid behavior. Synchronization maps and root mean square (rms) lift coefficient plots illustrate the impact of Reynolds number and movement frequency on lift suppression. The findings indicate that achieving synchronization in 3-D flow necessitates stronger amplitudes and higher frequencies. At higher Reynolds numbers, the wake structures become unstable, leading to intricate vortical patterns. Consequently, the synchronization curve shifts towards higher amplitudes and frequencies in 3-D simulations. Understanding these phenomena is vital for reducing lift force in practical applications. This research significantly contributes to knowledge regarding synchronization and lift suppression in fluid flow around vibrating cylinders.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference30 articles.

1. A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake;Dong;J Fluid Mech,2006

2. Vortex dynamics in the cylinder wake;Williamson;Annu Rev Fluid Mech,1996

3. Vortex formation in the wake of an oscillating cylinder;Williamson;J Fluids Structures,1988

4. Vortex-induced vibrations;Williamson;Annu Rev Fluid Mech,2004

5. On the inclusion of three-dimensional effects in sim-ulations of two-dimensional bluff-body wake flows;Mittal,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3