Design of a Semi Active Differential to Improve the Vehicle Dynamics

Author:

Annicchiarico Claudio1,Rinchi Mirko1,Pellari Stefano1,Capitani Renzo1

Affiliation:

1. Università degli Studi di Firenze, Florence, Italy

Abstract

Suppressing or limiting the differential action of the differential mechanism is the mostly adopted technique to avoid the skidding of a driving wheel of a vehicle riding on a poorly adherent surface. The devices carrying out this function unbalance the traction force distribution in the differential, generating a yaw torque acting on the vehicle as a secondary effect. If the unbalancing action is electronically controlled, this yaw torque can be used to affect the attitude of car as a torque vectoring technique. In this paper, a purpose built differential is presented and its technical features are highlighted, including the electrohydraulic actuation. Moreover, its torque vectoring capabilities are discussed, basing on the numerical simulation campaign performed deploying this device in a 7 DOFs model of a race car with low ground effect. The results of these simulations are compared with the behavior of the same vehicle equipped with a common passive locking differential, to show that the proposed one and its control logic (which relies on only measurable inputs) are able of improving the handling of the vehicle, in terms of both vehicle stability and linearity with the driver’s inputs. Therefore, this system could be considered as a completion of the common ESC (“Electronic Stability Control) systems to control the vehicle attitude when using the brake system is an inefficient solution.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Mathematical Approach for Modeling Sport Differential Mechanism;Vehicles;2022-01-21

2. Using the Brake Torque to Redistribute the Engine Power Transmitting to the Left and Right Drive Wheels;Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020);2021

3. Analysis of the influence of the inter-wheel differentials design on the resistance of the car curved motion;Eastern-European Journal of Enterprise Technologies;2019-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3