Experimental Investigation of Innovative Cooling Schemes on an Additively Manufactured Engine Scale Turbine Nozzle Guide Vane

Author:

Hossain Mohammad A.1,Ameri Ali1,Gregory James W.1,Bons Jeffrey P.1

Affiliation:

1. Aerospace Research Center, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43235

Abstract

Abstract This study includes the design, validation, and fabrication via direct metal laser sintering (DMLS) of a gas turbine nozzle guide vanes (NGV) that incorporates three innovative cooling schemes specifically enabled by additive manufacturing. The novel NGV design is the culmination of an extensive research and development effort over a period of 4 years that included low- and high-speed cascade testing coupled with unsteady computational fluid dynamics for numerous candidate innovative cooling architectures. The final vane design (SJ-vane) consists of sweeping jet (SJ) film cooling holes on the suction surface (SS), sweeping jet impingement holes at the leading edge and double-wall partial length triangular pin-fin with impinging jet at the trailing edge. For comparison purposes, a second DMLS enabled vane (777-vane) was designed and fabricated with prototypical cooling circuits to serve as a baseline. This vane consists of a shaped film cooling holes on the suction surface, circular impingement holes at the leading edge, and full-length cylindrical pin-fins at the trailing edge. Experiments with the two DMLS enabled vanes were performed at the Ohio State University Turbine Reacting Flow Rig (TuRFR) at engine-relevant temperature (1375 K) and Mach number conditions. Infrared (IR) thermography was utilized to measure the wall temperature of the pressure and suction surface at several coolant mass flowrates to estimate the overall cooling effectiveness (ϕ). Results showed improved cooling performance for the advanced cooling schemes (sweeping jet film cooling, impingement cooling, and triangular pin-fin cooling) compared with the baseline cooling schemes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3