Modeling the Thermoviscoelastic Properties and Recovery Behavior of Shape Memory Polymer Composites

Author:

Alexander Stephen1,Xiao Rui2,Nguyen Thao D.3

Affiliation:

1. Department of Biomedical Engineering, Boston University, Boston, MA 02215 e-mail:

2. e-mail:

3. e-mail:  Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218

Abstract

This work investigated the effects of stiff inclusions on the thermoviscoelastic properties and recovery behavior of shape memory polymer composites. Recent manufacturing advances have increased the applicability and interest in SMPCs made with carbon and glass inclusions. The resulting biphasic material introduces changes to both the thermal and mechanical responses, which are not fully understood. Previous studies of these effects have been concerned chiefly with experimental characterization and application of these materials. The few existing computational studies have been constrained by the limitations of available constitutive models for the SMP matrix material. The present study applied previously developed finite-deformation, time-dependent thermoviscoelastic models for amorphous SMPs to investigate the properties and shape memory behavior of SMPCs with a hexagonal arrangement of hard inclusions. A finite element model of a repeating unit cell was developed for the periodic microstructure of the SMPC and used to evaluate the temperature-dependent viscoelastic properties, including the storage modulus, tan δ, coefficient of thermal expansion, and Young's modulus, as well as the shape recovery response, characterized by the unconstrained strain recovery response and the constrained recovery stress response. The presence of inclusions in greater volume fractions were shown to lower both the glass transition and recovery temperatures slightly, while substantially increasing the storage and Young's modulus. The inclusions also negligibly affected the unconstrained strain recovery rate, while decreasing the constrained recovery stress response. The results demonstrate the potential of using hard fillers to increase the stiffness and hardness of amorphous networks for structural application without significantly affecting the temperature-dependence and time-dependence of the shape recovery response.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3