Tough shape-memory polymer—fiber composites

Author:

Ware Taylor1,Ellson Greg2,Kwasnik Agatha3,Drewicz Stephanie3,Gall Ken4,Voit Walter5

Affiliation:

1. Department of Materials Science and Engineering, University of Texas at Dallas, USA

2. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA

3. Department of Biomedical Engineering, Georgia Institute of Technology, USA

4. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA, School of Materials Science and Engineering, Georgia Institute of Technology, USA

5. Department of Materials Science and Engineering, University of Texas at Dallas, USA,

Abstract

This study describes a multi-faceted materials selection problem that ultimately produces a new class of polymer—fiber composites with failure strains of near 400% and ultimate tensile strengths (UTS’s) up to 20 MPa. Independent control of the rubbery modulus (proportional to the compressive force the composite can apply) is demonstrated by altering the crosslinker density of the polymer matrix and the fiber weave. The stress the composite can withstand can be modified with changing fiber material and weave geometry. The resulting SMP—fiber composites can be designed with glass transition temperatures (Tg’s) ranging from 0°C to 75°C, and specific multi-layer combinations of these systems provide a promising candidate for orthopedic casts: specifically, a woven anteres nylon lycra mesh rigidized with a polymer synthesized from methyl acrylate, butyl acrylate, isobornyl acrylate, and trimethylol propane triacrylate. The results of this study are intended to enable future orthopedic applications where the ability to accurately and independently position Tg and the ability to tune recoverable force in toughened, fiber-reinforced SMPs are required.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3