Nonlinear Vision-Based Observer for Visual Servo Control of an Aerial Robot in Global Positioning System Denied Environments

Author:

Guo Dejun1,Wang Hesheng2,Leang Kam K.1

Affiliation:

1. Design, Automation, Robotics, and Control (DARC) Lab, Department of Mechanical Engineering, Robotics Center, University of Utah, Salt Lake City, UT 84112 e-mail:

2. Key Laboratory of System Control and Information Processing, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

This paper presents a nonlinear vision-based observer to estimate 3D translational position and velocity of a quadrotor aerial robot for closed-loop, position-based, visual-servo control in global positioning system (GPS)-denied environments. The method allows for motion control in areas where GPS signals are weak or absent, for example, inside of a building. Herein, the robot uses a low-cost on-board camera to observe at least two feature points fixed in the world frame to self-localize for feedback control, without constraints on the altitude of the robot. The nonlinear observer described takes advantage of the geometry of the perspective projection and is designed to update the translational position and velocity in real-time by exploiting visual information and information from an inertial measurement unit. One key advantage of the algorithm is it does not require constraints or assumptions on the altitude and initial estimation errors. Two new controllers based on the backstepping technique that take advantage of the estimator's output are described and implemented for trajectory tracking. The Lyapunov method is used to show asymptotic stability of the closed-loop system. Simulation and experimental results from an indoor environment where GPS localization is not available are presented to demonstrate feasibility and validate the performance of the observer and control system for hovering and tracking a circular trajectory defined in the world frame.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3