Optimization of Wall Cooling in Gas Turbine Combustor Through Three-Dimensional Numerical Simulation

Author:

Gordon R.1,Levy Y.1

Affiliation:

1. Faculty of Aerospace Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

This paper is concerned with improving the prediction reliability of CFD modeling of gas turbine combustors. CFD modeling of gas turbine combustors has recently become an important tool in the combustor design process, which till now routinely used the old “cut and try” design practice. Improving the prediction capabilities and reliability of CFD methods will reduce the cycle time between idea and a working product. The paper presents a 3D numerical simulation of the BSE Ltd. YT-175 engine combustor, a small, annular, reversal flow type combustor. The entire flow field is modeled, from the compressor diffuser to turbine inlet. The model includes the fuel nozzle, the vaporizer solid walls, and liner solid walls with the dilution holes and cooling louvers. A periodic 36 deg sector of the combustor is modeled using a hybrid structured/unstructured multiblock grid. The time averaged Navier-Stokes (N-S) equations are solved, using the k-ε turbulence model and the combined time scale (COMTIME)/PPDF models for modeling the turbulent kinetic energy reaction rate. The vaporizer and liner walls’ temperature is predicted by the “conjugate heat transfer” methodology, based on simultaneous solution of the heat transfer equations for the vaporizer and liner walls, coupled with the N-S equations for the fluids. The calculated results for the mass flux passing through the vaporizer and various holes and slots of the liner walls, as well as the jet angle emerging from the liner dilution holes, are in very good agreement with experimental measurements. The predicted location of the liner wall hot spots agrees well with the position of deformations and cracks that occurred in the liner walls during test runs of the combustor. The CFD was used to modify the YT-175 combustion chamber to eliminate structural problems, caused by the liner walls overheating, that were observed during its development.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3