Numerical Computation and Validation of Two-Phase Flow Downstream of a Gas Turbine Combustor Dome Swirl Cup

Author:

Tolpadi A. K.1,Burrus D. L.2,Lawson R. J.2

Affiliation:

1. General Electric Corporate Research and Development, P.O. Box 8, Mail Stop K1-ES 206, Schenectady, NY 12301

2. General Electric Aircraft Engines, 1 Neumann Way, Mail Drop A309, Cincinnati, OH 45215

Abstract

The two-phase axisymmetric flow field downstream of the swirl cup of an advanced gas turbine combustor is studied numerically and validated against experimental Phase-Doppler Particle Analyzer (PDPA) data. The swirl cup analyzed is that of a single annular GE/SNECMA CFM56 turbofan engine that is comprised of a pair of coaxial counterswirling air streams together with a fuel atomizer. The atomized fuel mixes with the swirling air stream, resulting in the establishment of a complex two-phase flow field within the swirl chamber. The analysis procedure involves the solution of the gas phase equations in an Eulerian frame of reference using the code CONCERT. CONCERT has been developed and used extensively in the past and represents a fully elliptic body-fitted computational fluid dynamics code to predict flow fields in practical full-scale combustors. The flow in this study is assumed to be nonreacting and isothermal. The liquid phase is simulated by using a droplet spray model and by treating the motion of the fuel droplets in a Lagrangian frame of reference. Extensive PDPA data for the CFM56 engine swirl cup have been obtained at atmospheric pressure by using water as the fuel (Wang et al., 1992a). The PDPA system makes pointwise measurements that are fundamentally Eulerian. Measurements have been made of the continuous gas phase velocity together with discrete phase attributes such as droplet size, droplet number count, and droplet velocity distribution at various axial stations downstream of the injector. Numerical calculations were performed under the exact inlet and boundary conditions as the experimental measurements. The computed gas phase velocity field showed good agreement with the test data. The agreement was found to be best at the stations close to the primary venturi of the swirler and to be reasonable at later stations. The unique contribution of this work is the formulation of a numerical PDPA scheme for comparing droplet data. The numerical PDPA scheme essentially converts the Lagrangian droplet phase data to the format of the experimental PDPA. Several sampling volumes (bins) were selected within the computational domain. The trajectories of various droplets passing through these volumes were monitored and appropriately integrated to obtain the distribution of the droplet characteristics in space. The calculated droplet count and mean droplet velocity distributions were compared with the measurements and showed very good agreement in the case of larger size droplets and fair agreement for smaller size droplets.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3