Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique

Author:

Li Shiou-Jiuan,Yang Shang-Feng,Han Je-Chin1

Affiliation:

1. e-mail: jc-han@tamu.edu Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

The density ratio effect on leading edge showerhead film cooling has been studied experimentally using the pressure sensitive paint (PSP) mass transfer analogy method. The leading edge model is a blunt body with a semicylinder and an after body. There are two designs: seven-row and three-row of film cooling holes for simulating a vane and blade, respectively. The film holes are located at 0 (stagnation row), ±15, ±30, and ±45 deg for the seven-row design, and at 0 and ±30 for the three-row design. Four film hole configurations are used for both test designs: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. The coolant to mainstream density ratio varies from DR = 1.0, 1.5, to 2.0 while the blowing ratio varies from M = 0.5 to 2.1. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900 based on mainstream velocity and diameter of the cylinder. The mainstream turbulence intensity near the leading edge model is about 7%. The results show the shaped holes have an overall higher film cooling effectiveness than the cylindrical holes, and the radial angle holes are better than the compound angle holes, particularly at a higher blowing ratio. A larger density ratio makes more coolant attach to the surface and increases film protection for all cases. Radial angle shaped holes provide the best film cooling at a higher density ratio and blowing ratio for both designs.

Publisher

ASME International

Subject

Mechanical Engineering

Reference26 articles.

1. Turbine Blade Film Cooling Using PSP Technique;Frontiers Heat Mass Transfer,2010

2. Film Cooling Downstream of a Row of Discrete Holes With Compound Angle;ASME J. Turbomach.,2001

3. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits;ASME J. Turbomach.,1998

4. Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique;ASME J. Heat Transfer,2009

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3