Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique

Author:

Gao Zhihong1,Han Je-Chin1

Affiliation:

1. Department of Mechanical Engineering, Turbine Heat Transfer Laboratory, Texas A&M University, College Station, TX 77843-3123

Abstract

The effect of film-hole geometry and angle on turbine blade leading edge film cooling has been experimentally studied using the pressure sensitive paint technique. The leading edge is modeled by a blunt body with a semicylinder and an after-body. Two film cooling designs are considered: a heavily film cooled leading edge featured with seven rows of film cooling holes and a moderately film cooled leading edge with three rows. For the seven-row design, the film holes are located at 0 deg (stagnation line), ±15 deg, ±30 deg, and ±45 deg on the model surface. For the three-row design, the film holes are located at 0 deg and ±30 deg. Four different film cooling hole configurations are applied to each design: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Testing was done in a low speed wind tunnel. The Reynolds number, based on mainstream velocity and diameter of the cylinder, is 100,900. The mainstream turbulence intensity is about 7% near of leading edge model and the turbulence integral length scale is about 1.5 cm. Five averaged blowing ratios are tested ranging from M=0.5 to M=2.0. The results show that the shaped holes provide higher film cooling effectiveness than the cylindrical holes, particularly at higher average blowing ratios. The radial angle holes give better effectiveness than the compound angle holes at M=1.0–2.0. The seven-row film cooling design results in much higher effectiveness on the leading edge region than the three-row design at the same average blowing ratio or same amount coolant flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3