Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk–Blade Boundaries

Author:

Beck Joseph A.1,Brown Jeffrey M.2,Kaszynski Alex A.2,Cross Charles J.2,Slater Joseph C.3

Affiliation:

1. Manufacturing and Industrial Technologies Division, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 e-mail:

2. Turbine Engine Division, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

3. Associate Dean Defense Aerospace Studies, Wright State University, Dayton, OH 45435

Abstract

New geometric mistuning modeling approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk–blade sector, particularly the disk–blade boundary or connection. Reduced-order models (ROMs) are developed from a Craig–Bampton component mode synthesis (C–B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an Eigen-analysis of the C–B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed, which offers significant computational savings for subsequent analyses. Two configurations of disk–blade connection mistuning are investigated: as-measured principal component (PC) deviations and random perturbations to the interblade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk–blade connections during solid model generation from optically scanned geometries. Free and forced response results are obtained for each ROM and each disk–blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide accurate results with a reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk–blade connection deviations are small or conditions where large perturbations are localized to a small areas of the disk–blade connection.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3