Modal Identification for Integrally Bladed Rotors Under Traveling Wave Excitation

Author:

Beck Joseph A.1,Brown Jeffrey M.2,Gillaugh Daniel L.2,Kaszynski Alex A.3

Affiliation:

1. Perceptive Engineering Analytics , LLC Minneapolis, MN 55418

2. AFRL/RQTI Wright-Patterson AFB , Wright-Patterson AFB, OH 45433

3. Advanced Engineering Solutions , Lafayette, CO 80026

Abstract

Abstract The safety of a fielded integrally bladed rotor (IBR) is often assessed through vibration testing. Responses due to various types of excitation are measured and processed and can be inputs to follow-on analyses, such as mistuning identification. One such excitation technique is the traveling wave excitation (TWE) where all blades are simultaneously excited at phase differences that attempt to replicate naturally occurring mode shapes and certain operating conditions. This test relies on noncontact exciters, e.g., magnets and speakers, that are often not directly measured. As a result, formulating the frequency response function (FRF) is difficult and the extraction of system modal data using FRF fitting techniques in the absence of FRFs is not possible. This paper presents an approach to use measured responses from TWE tests. It is shown that the fast Fourier transform (FFT) of the TWE inputs is mostly independent over the prescribed frequency range. Consequently, the output spectral density matrix can be formulated in an operational modal analysis (OMA) sense, where direct measurement of the inputs is not needed. A full spectral density matrix is then formulated from a single measurement on each blade obtained during a single test, thus reducing the number of measurement locations and testing excitation conditions. This matrix is fit by a polyreference-least squares complex frequency-domain (P-LSCF) system identification technique tailored for OMA-type measurements. The methodology is tested using simulated TWE data for an IBR model using different damping levels. Comparisons between identified modal data and those used to create the model are made and show the methodology accurately predicts underlying system information even for closely spaced modes that are common to IBRs. Finally, the method is used on experimental TWE data of an industrial IBR.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3