Probabilistic Modeling of Driver Behaviors at Urban Crossroad Interactions

Author:

Liu Yuan-Cheng1,Chan Kuei-Yuan1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

Abstract The interactions with human drivers is one of the major challenges for autonomous vehicles. In this study, we consider urban crossroads without signals where driver interactions are indispensable. Crossroads are parameterized to be used in studying how drivers pass the crossroad while maintaining a desired speed without collision. We define a probability of yielding for each car as a function of vehicle speed and the distance-to-intersection for both vehicles, while the interactions between vehicles are characterized by a point of action for incoming vehicles from different directions. Driver behaviors in terms of acceleration/deceleration given current circumstances are also modeled probabilistically. The method is then analyzed and validated by data collected from human drivers in the simulated environments. The result shows comparable prediction accuracy to the state-of-the-art method, where characteristic parameters of drivers are also shown to be critical for the behavior predictions. We also extend our model to two real-world urban crossroads applications : crash analysis and traffic characteristic parameters identification. In both cases, our prediction results are analogous to those acquired in virtual environments. For autonomous vehicle, our method can help building a computer-driving logic that matches human behaviors, such that interactions between different drivers will be more intuitive.

Publisher

ASME International

Subject

General Medicine

Reference33 articles.

1. Stanley: The Robot That Won the Darpa Grand Challenge;Thrun;J. Field Rob.,2006

2. Peak Car Ownership: The Market Opportunity of Electric Automated Mobility Services;Walker,2016

3. Report of Traffic Collision Involving an Autonomous Vehicle (OL 316);California Department of Motor Vehicles,2019

4. Forecasting Americans’ Long-Term Adoption of Connected and Autonomous Vehicle Technologies;Bansal;Transp. Res. Part A: Pol. Pract.,2017

5. Preparing for the Future of Transportation: Automated Vehicles 3.0 (AV 3.0);U. S. Department of Transportation,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3