Mathematical Modeling of Novel Two-Phase Heat Transfer Device for Thermal Management of Light Emitting Diodes

Author:

Remella Karthik S.1,Gerner Frank M.2,Shuja Ahmed3

Affiliation:

1. Microscale Heat Transfer Laboratory, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 565 Rhodes Hall, Cincinnati, OH 45221 e-mail:

2. Professor Microscale Heat Transfer Laboratory, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 565 Rhodes Hall, Cincinnati, OH 45221 e-mail:

3. BritePointe, Inc., Hayward, CA 94541 e-mail:

Abstract

The paper introduces a novel two-phase heat transfer device (TPHTD) which is employed in the thermal management of light emitting diodes (LEDs). The heat transfer device structurally resembles a conventional loop heat pipe (LHP) without a compensation chamber, but operates very differently from it. The device is comprised of a central evaporator package and a circular coil that acts as a heat exchanger loop. The working fluid leaving the evaporator has a two-phase mixture quality of approximately 0.2. Having introduced the device, the paper delineates a mathematical model for predicting its thermal performance. The primary objective of the model is to provide a fundamental understanding of the operation of the device. A one-dimensional thermal resistance model (TRM) is utilized in modeling the evaporator. The paper presents a detailed discussion on obtaining these resistances from experiments conducted on the device. A correlation for the external heat transfer coefficient of the heat exchanger loop is proposed based on experiments and is found to be in good agreement with literature. The model predicts performance parameters such as board temperature, two-phase mixture quality, and saturation and subcooled temperatures (Tsat and Tsc) of the working fluid for different input thermal powers (Qtot). Based on experimental evidence, it is concluded that the majority of Qtot (∼75%) is utilized in phase change of the working fluid, and the rest reheats the working fluid from a lower subcooled temperature (Tsc) to the saturation temperature (Tsat) of the evaporator.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3