Separated Liquid–Vapor Flow Analysis in a Mini-Channel with Mesh Walls in the Closed-Loop Two-Phase Wicked Thermosyphon (CLTPWT)

Author:

Remella Karthik S.1,Gerner Frank M.1

Affiliation:

1. Department of Mechanical & Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

A metallic wire mesh screen, wire diameter of approximately 50 μm, is folded into ~80 “accordion-shaped” mini-channels and placed inside the evaporator package of a novel passive thermal management device for cooling overhead light-emitting diodes (LEDs) used in factory floors and high-bay facilities. The thermal power dissipated via these devices ranges between 75 W and 171 W. The channel walls (screen) wick liquid water from the porous wick (located centrally above the screen) and facilitate its evaporation. The closed-loop tests on this device confirm that the two-phase mixture quality exiting the evaporator is approximately 0.2. This paper presents a steady-state numerical model of this separated liquid–vapor flow in a single mini-rectangular channel (900 μm × 2000 μm, 4 cm long) with wire mesh-screen walls. The primary objective of the model is to estimate the pressure drops occurring in this two-phase flow. The model initially assumes a flat liquid–vapor interface along the channel and uses an iterative approach to estimate its final meniscus shape (curvature). In addition to the temperature distribution along the screen walls, this paper also discusses the velocity and pressure distributions in both liquid and vapor regions. It also helps understand the liquid–vapor interfacial shear in this flow configuration and proposes a flow-limiting condition for the device by predicting flow reversal in the channel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3