Investigation on the Effect of a Realistic Flow Field on the Adiabatic Effectiveness of an Effusion-Cooled Combustor

Author:

Andrei Luca1,Andreini Antonio1,Bianchini Cosimo1,Facchini Bruno1,Mazzei Lorenzo1,Turrini Fabio2

Affiliation:

1. DIEF—Department of Industrial Engineering Florence, University of Florence, via di Santa Marta 3, Firenze 50139, Italy e-mail:

2. Combustors Product Engineering, Avio Aero, via Primo Maggio 56, Rivalta di Torino 10040, Italy e-mail:

Abstract

Effusion cooling represents the state of the art of liner cooling technology for modern combustors. This technique consists of an array of closely spaced discrete film cooling holes and contributes to lower the metal temperature by the combined protective effect of coolant film and heat removal through forced convection inside each hole. Despite many efforts reported in literature to characterize the cooling performance of these devices, detailed analyses of the mixing process between coolant and hot gas are difficult to perform, especially when superposition and density ratio effects as well as the interaction with complex gas side flow field become significant. Furthermore, recent investigations on the acoustic properties of these perforations pointed out the challenge to maintain optimal cooling performance also with orthogonal holes, which showed higher sound absorption. The objective of this paper is to investigate the impact of a realistic flow field on the adiabatic effectiveness performance of effusion cooling liners to verify the findings available in literature, which are mostly based on effusion flat plates with aligned cross flow, in case of swirled hot gas flow. The geometry consists of a tubular combustion chamber, equipped with a double swirler injection system and characterized by 22 rows of cooling holes on the liner. The liner cooling system employs slot cooling as well: its interactions with the cold gas injected through the effusion plate are investigated too. Taking advantage of the rotational periodicity of the effusion geometry and assuming axisymmetric conditions at the combustor inlet, steady state RANS calculations have been performed with the commercial code Ansys® CFX simulating a single circumferential pitch. Obtained results show how the effusion perforation angle deeply affects the flow-field around the corner of the combustor, in particular, with a strong reduction of slot effectiveness in case of 90 deg angle value.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3