Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland

Author:

Lazik W.1,Doerr Th.1,Bake S.1,v. d. Bank R.1,Rackwitz L.1

Affiliation:

1. Rolls-Royce Deutschland Ltd. & Co. KG, Berlin, Germany

Abstract

Lean-burn combustion technology is identified to be the key technology for aero-engine combustion systems to achieve future legislative requirements for NOx. The lean-burn low NOx combustor development at Rolls-Royce Deutschland RRD for the upcoming generation of aero-engines is presented, which has been supported by the German aeronautical research programme. The down selection process of different injector concepts is described in detail to develop lean-burn fuel injection technology up to a technology level for engine application. Initial concept validation with testing on single sector combustion rigs applying advanced laser measurement techniques is followed by high power single sector emission tests to prove low emission characteristics. Climbing the level of technology readiness, which is in each phase substantiated by intense CFD simulations, the most promising low emissions design concepts have been investigated for unrestricted combustor operability compared to conventional rich burn systems. Altitude relight, weak extinction margins, fuel staging optimisation and combustion efficiency in the vicinity of staging points have been optimised on different sub-atmospheric, atmospheric, medium and high-pressure test vehicles. The validation process concludes with sub-atmospheric and high-pressure testing within a fully annular test environment before the final lean-burn fuel injector configuration has been selected for core engine testing to prove emission performance and operability of the fuel-staged combustion system. Two fuel injector configurations were successfully tested in a high-pressure fully annular rig. The combustor module and both injector standards have been cleared for core engine operation.

Publisher

ASMEDC

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3