A Recommender System for the Additive Manufacturing of Component Inventories Using Machine Learning

Author:

Elaheh Ghiasian Seyedeh1,Lewis Kemper1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260

Abstract

Abstract To appropriately leverage the benefits of additive manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Furthermore, when considering AM for an inventory of existing components traditionally fabricated through traditional means, such a guarantee could result in significant technical and economic advantages. To realize such advantages, this paper presents a platform that allows for a successful and efficient transition of part-inventories to AM. This is accomplished using a novel design recommender system supported by machine learning, capable of making suggestions towards effective design modifications. This system uses an automatic AM feasibility analysis of existing parts and a clustering of the parts based on similarities in their AM-feasibilities to develop a set of recommendations for those part clusters whose current designs are deemed as infeasible and/or inefficient for AM. The design modifications leverage a redesign algorithm to address not only problematic geometric issues but also potential infeasibilities associated with resource consumption. The utility of the presented modification algorithm is demonstrated using a number of case studies.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for potential assessment and adaptation for additive manufacturing of conventionally manufactured components;Research in Engineering Design;2023-08-24

2. Applications in Data-Driven Additive Manufacturing;Engineering of Additive Manufacturing Features for Data-Driven Solutions;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3