Method for potential assessment and adaptation for additive manufacturing of conventionally manufactured components

Author:

Siller NadjaORCID,Werner SebastianORCID,Molina VeronicaORCID,Göhlich DietmarORCID

Abstract

AbstractThe novelty of additive manufacturing (AM) involves new requirements, restrictions and rules, that are considerably different to those of conventional manufacturing methods. Therefore, designers often lack experience and knowledge about identifying AM-suited components. However, to ensure profitability, it is essential to choose components, that are well suited for additive manufacturing. State-of-the-art user-support methods for identifying AM potential widely focus on either economic potential or manufacturability but fail to address both aspects. While machine learning solutions are considered highly efficient, the assessment outcome lacks process transparency, inhibiting troubleshooting, plausibility checks and problem-oriented considerations. This paper proposes a holistic, yet detailed and transparent approach to identify conventionally manufactured parts for AM from an existing product portfolio, enabling decision-making based on quantifiable results. It combines and advances state-of-the-art methods, considering manufacturability, economic profitability and socio-ecological aspects. Besides evaluating AM potential, the method additionally assesses the components' potential for re-design-based enhancement for AM suitability. Besides understanding product functions and present production processes, users are expected to have a basic understanding of company goals. The approach involves inquiries regarding company- and product-specific priorities, enabling a weighted assessment. The weights are determined based on individual company philosophies regarding AM value propositions such as differing stakeholder interests and priorities. Additionally, the approach allows users to investigate different development goals by weighting opportunistic and restrictive assessment. The method application is demonstrated via an assembly comprising 11 parts in a scenario focusing on serviceability, eventually determining suitability statements.

Funder

European Regional Development Fund

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3