Vision-Based Weld Pool Width Control

Author:

Pietrzak K. A.1,Packer S. M.1

Affiliation:

1. United Technologies Research Center, East Hartford, CT 06108

Abstract

Methods for controlling weld penetration for arc welding processes from top-side measurements have long been sought. One indirect variable that has been reported to correlate with penetration is weld pool geometry. A system which uses weld pool geometry sensing for controlling weld penetration is described in this paper. The system uses a miniature camera mounted in a modified coaxial viewing torch to view the weld pool. A robust machine vision algorithm has been developed for this system to measure weld pool width. The algorithm was designed to locate the edges of the weld pool despite the presence of other edges caused by the heat affected zone, scratches, marks, and weld pool impurities. The algorithm uses a matched edge filter and a majority voting scheme to measure the width of the pool. A control system was developed to regulate weld pool width in the presence of disturbances caused by such items as incorrect parameter settings, small variations in material composition, and material thickness changes. Experiments were conducted to test the control system by simulating some of these disturbances. The experiments demonstrated that for certain classes of materials, this technique works quite well. However, for other materials such as stainless steel 304, surface impurities in the weld pool visually obscure the weld pool and its edges to such a degree that the system fails to lock onto the edges of the pool.

Publisher

ASME International

Subject

General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3