Adaptive Intelligent Welding Manufacturing

Author:

ZHANG YUMING, ,WANG QIYUE,LIU YUKANG

Abstract

Optimal design of the welding procedure gives the desired welding results under nominal welding conditions. During manufacturing, where the actual welding manufacturing conditions often deviate from the nominal ones used in the design, applying the designed procedure will produce welding results that are different from the desired ones. Adaption is needed to make corrections and adjust some of the welding parameters from those specified in the design. This is adaptive welding. While human welders can be adaptive to make corrections and adjustments, their performance is limited by their physical constraints and skill level. To be adaptive, automated and robotic welding systems require abilities in sensing the welding process, extracting the needed information from signals from the sensors, predicting the responses of the welding process to the adjustments on welding parameters, and optimizing the adjustments. This results in the application of classical sensing, modeling of process dynamics, and control system design. In many cases, the needed information for the weld quality and process variables of our concern is not easy to extract from the sensor’s data. Studies are needed to propose the phenomena to sense and establish the scientific foundation to correlate them to the weld quality or process variables of our concern. Such studies can be labor intensive, and a more automated approach is needed. Analysis suggests that artificial intelligence and machine learning, especially deep learning, can help automate the learning such that the needed intelligence for robotic welding adaptation can be directly and automatically learned from experimental data after the physical phenomena being represented by the experimental data has been appropriately selected to make sure they are fundamentally correlated to that with which we are concerned. Some adaptation abilities may also be learned from skilled human welders. In addition, human-robot collaborative welding may incorporate adaptations from humans with the welding robots. This paper analyzes and identifies the challenges in adaptive robotic welding, reviews efforts devoted to solve these challenges, analyzes the principles and nature of the methods behind these efforts, and introduces modern approaches, including machine learning/deep learning, learning from humans, and human-robot collaboration, to solve these challenges.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3