Prandtl Number Effect on the Laminar Convective Heat Transfer From a Rotating Disk

Author:

Helcig Christian1,aus der Wiesche Stefan1,Shevchuk Igor V.2

Affiliation:

1. Thermal and Power Engineering, Department of Mechanical Engineering, Muenster University of Applied Sciences, Steinfurt 48565, Germany e-mail:

2. MBtech Group GmbH & Co. KGaA, Fellbach-Schmiden 70736, Germany e-mail:

Abstract

Convective heat transfer in rotating disk systems is of great importance in many engineering applications. Despite the high practical relevance, there have been only a small number of experimental investigations regarding the influence of the Prandtl number larger than unity. Ever since Dorfman's pioneering work more than 50 years ago, various analytical works about the heat transfer of a rotating disk have been published. However, this study is a novelty because measurements of the laminar convective heat transfer over a free rotating disk for a wide range of Prandtl number up to Pr=5000 are presented. The accuracy of the employed experimental apparatus was assessed by heat transfer measurements in air, for which reliable literature data are widely available. Natural convection effects and temperature-dependent physical properties have been taken into consideration using the property-ratio method. The experimental results are in excellent agreement with analytical self-similar solutions and the theoretical correlation of Lin and Lin. The applicability of frequently used heat transfer correlations is assessed by the means of the new experimental data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference37 articles.

1. Heat Transfer From an Air-Cooled Rotating Disk;Proc. R. Soc. London, Ser. A,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3